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Abstract-Molecules of a substance (or thermal markers) in a turbulent flow escape from the fluid particles 
in which they are released because of their molecular diRusivitl:The consequences of this phenomenon on 
the effectiveness of turbulence to disperse a foreign substance are explored by using a Direct Numerical 
Simulation (DNS) of flow in a channel. Tmjectories of molecules of different Schmidt (or Prandtl) numbers 
originating in the center of the channel are computed and property autocorrelations and other single- 

particle Lagrangian statistics are reported and discussed. 

1. INTRODUCTION 

MCXECULAR diffusion can cause thermal or molecular 
markers to escape from fluid particles, so as to 
decrease the effectiveness of turbulent motions in dis- 
persing heat or mass. When the molecular diffusion 
coefficient is of the same order as the eddy d#usivity 
or larger (as, for example, in the case of liquid metal 
heat transfer) the effects of molecular diffusivity can- 
not be neglected. 

This paper presents the results of a computer study 
of the effect of molecular diffusion on turbulent 
diffusion from a point source located at the center of 
a channel, where the flow is nearly homogeneous. The 
pseudospectral code of Lyons et al. [l] that simulates 
low Reynolds number turbulent flow in a two-dimen- 
sional channel is employed. The fluid particle tracking 
algorithm of Kontomaris c>t al. [2] is extended to trace 
property particles which contain either molecules of 
kinetic energy higher than that of the surrounding 
fluid (in the case of thermal markers) or molecules of 
a foreign species. This is accomplished by super- 
imposing a three-dimensional random walk on the 
convective motion of the particles. The step size of the 
random walk is determined by the magnitude of the 
diffusivity (or equivalently the Prandtl or Schmidt 
number) of the property particles. By simulatin! tfe 
flow and the molecular diffusion process from first 
principles without resorting to any questionable 
assumptions, new accurate “data” are obtained about 
the interaction of molecular and turbulent diffusion. 

A theoretical analysis for the effect of molecular 
diffusion on turbulent diffusion for small diffusion 
times was presented by Saffman [3,4], who treated fhe 
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idealized case of dispersion of a dynamically passive 
substance from a point source in a stationary, homo- 
geneous and isotropic turbulent velocity field. He gen- 
eralized Taylor’s [5] Lagrangian formulation of the 
turbulent diffusion problem, by introducing the con- 
cept of a “substance or property autocorrelation” in 
order to allow for molecular effects. This correlation 
differs from the well-known Lagrangian auto- 
correlation in that it correlates fluid velocity com- 
ponents along the trajectories of property particles, 
and not of fluid particles. Since a marker can leak 
out of a fluid particle because of random molecular 
motion, the property autocorrelation is not purely 
a property of the turbulence, but depends also on 
molecular diffusivity. 

For long times after release no precise calculation 
of molecular effects is available. A few intuitive solu- 
tions, however, have been proposed ([3, 41, Hinze 
[6]). Recently Kontomaris and Hanratty [7] used an 
iterative procedure, for calculating the effect of molec- 
ular diffusion on the property autocorrelation in iso- 
tropic turbulence for all times. which is based on the 
independence hypothesis of Corrsin [8, 91. Their 
approach gives results which are consistent with those 
presented by Saffman but less restrictive. They also 
summarize recent related work by Phythian and 
Curtis [lo]. Drummond [l 11, Drummond et al. [12] 
and Sawford and Hunt [13]. A primary goal of the 
present paper is to provide detailed data for a practical 
flow so that the validity of the underlying assumptions 
and the range of applicability of such idealized 
theories could be assessed. A thorough Eulerian 
characterization of the flow at identical conditions 
has been documented by Lyons et al. [I]. 

The computer experiments in this paper differ from 
laboratory experiments in an important way. Since 
the contaminant cloud can be “frozen” and measured 
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NOMENCLATURE 

mean volumetric concentration 
maximum concentration at the 
center of the channel 
molecular diIfusivity 
total dispersion in the ith direction 
inhomogeneity factors, equation (11) 
channel half-width 
characteristic wall length scale 
periodicity lengths and dimensions of 
the computational box in the 
streamwise and spanwise directions 
probability density function of 
particle displacements, equation (20) 

probability 
characteristic wall pressure scale 
Prandtl number 
correlation coefficient as a measure 
of goodness of fit (Table 2) 
Lagrangian autocorrelation for fluid 
particles 
property autocorrelation, equation 
(2) 
time delay 
time 
characteristic wall time scale 
time of particle release 
total Eulerian velocity 
friction velocity 
ith component of the fluctuating 
Eulerian velocity 
Eulerian mean velocity at the channel 
center 
ith component of the Eulerian RMS 
velocity 
total Lagrangian velocity 
mean Lagrangian velocity 
ith component of the fluctuating 
Lagrmgian velocity 
ith component of the Lagrangian 
RMS velocity 
three, independent standard 
Gaussian random numbers 

X Eulerian space coordinates 
X instantaneous Lagrangian 

coordinates (i.e. marker position) 
x0 marker location at the time of release 
Y total particle displacement 
<Y> mean particle displacement 
Y particle displacement fluctuations. 

Greek symbols 
Aft, time step for discretization of the 

particle tracking equation 
AX total instantaneous particle 

displacement 
AX, hydrodynamic component of total 

particle displacement 
AX, molecular component of total 

particle displacement 
A+ AZ,, initial spacings between particles 

at time of release 
bin width for calculation of particle 
displacement probability density 
direction, equations (20) and (21) 
characteristic length scale in non- 
istropic extension of Saffman’s 
theory equations (8) and (11) 
Eulerian Taylor length microscales 
fluid kinematic viscosity 
fluid density 
mean square value of a Gaussian 
distribution 
average shear stress at the channel 
wall 
Lagrangian integral time scales 
time scale in Saffman’s isotropic 
theory, equation (4) 
time scale in the non-isotropic 
extension of Saffman’s theory, equation 
(11) 
RMS size of the fluctuating vorticity 
vector 
ith component of the Eulerian RMS 
vorticity. 

at regular time intervals, time is a natural coordinate 
for monitoring the progress of the diffusion process. 
Averages for a fixed time involve a consideration of 
markers at different distances downstream of the 
source. In contrast, laboratory studies are usually 
made at a fixed distance away from the source and 
co sider markers that have been in the field for differ- %. 
ent lengths of time. Since the theory of Lagrangian 
turbulent dispersion is formulated in terms of the 
diffusion time and no simple relation between down- 
stream location of markers and time is available, com- 
parisons of laboratory experiments with theory are 
complicated. 

1 

The influence of molecular diffusion on the property 
autocorrelation and, therefore, the turbuletiiffusion 
coefficient is examined. Since the only available solidly 
based result is limited to small diffusion times, a goal 
of the present study is to provide an understanding of 
the effects of molecular diffusion for ail times. 

2. MOLECULAR DIFFUSIVITY EFFECTS AT 

SMALL TIMES 

Saffman [3] showed that, in isotropic turbulence, 
the total dispersier at time tin the ith direction, Q(t), 
can be expressed as 
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o,(t) = 2u,z 
s 

’ (t-s)*R,(s)ds+2D.t, (1) 
0 

if it is assumed that the markers are released at t = 0. 
Here, Q(t) is the mean-squared displacement of the 
diffusing marker, D is the molecular diffusion 
coefficient and uz is the mean-square of the ith com- 
ponent of the fluctuating Eulerian velocity. The prop- 
erty autocorrelation, R,(s), at a given time delay, s, is 
defined as 

R(s) E (~,(x0>O)*~,(%,s)> 
1 2 (2) 

4 
where D~(x,, t) is the ith component of the fluctuating 
fluid velocity at the instantaneous position X(x,, t) of 
the marker which originated at x0 at the time of 
release. The usual convention that a repeated index 
indicates summation is not observed in this paper, 
unless otherwise stated. When the velocity products 
in (2) are computed along the trajectories of fluid 
particles, the standard Lagrangian autocorrelation, 
R,,, is recovered. It should be noted that in truly 
isotropic turbulence the indication of direction in (1) 
and (2) would have been redundant ; this notation will 
be found convenient in channel flow, however, since it 
is necessary to distinguish among different directions. 

Saffman [3] used the difference between the 
Lagrangian autocorrelation for fluid particles and 
the property autocorrelation as a measure of the in- 
teraction between molecular and turbulent diffusion. 
He found that, in isotropic turbulence, this difference 
is given, initially, as 

where 

J%,, (s ) - R,(s) = s/‘G,~ a (3) 

z:, = 1,‘jSD 

where 1, is the Taylor length microscale. 

(4) 

Channel flow is inhomogeneous in the normal direc- 
tion. At small times, however, most markers remain 
in the nearly homogeneous part of the flow in the 
center of the channel. Even in the center of the chan- 
nel, nevertheless, the Eulerian flow shows significant 
anisotropy. At the conditions of the current flow simu- 
lation, the differences among the different components 
of the Eulerian turbulence intensities and RMS vor- 
ticities at the center (u,,,,, = 0.812, u,,,.~ = 0.589, 

U,,,.j = 0.599 and w,,, , = 0.0425, w,,,,,,~ = &04p, 
w - 0.0487) are ion-negligible. These differences nnJ,i - 
become larger with increasing distance from the center- 
line. The Taylor length microscales are often used 
as a criterion for isotropy. Lyons [14] has computed 
Taylor microscales for the flow conditions considered 
in the present paper. Table 1 presents these micro- 
scales, at the center of the channel, defined as _ 

A,:&2 au,. 
I( ) I 3% 

In exactly isotropic turbulence all the entries of Table 

Table 1. Eulerian Taylor length microscales at the center of 
the channel, made dimensionless with U* and D 

,,2iZ, 2,, = = 42.6 37.5 J21,2 = 30.6 J21,, j22,, = = 36.9 31.8 
J21,, = 39.6 i,, = 30.0 

1 would be equal and any of the diagonal components 
of the microscale tensor could be used in equation (4). 

The assumption of isotropy in Saffman’s derivation 
can be easily relaxed. If attention is focused on small- 
time diffusion in the ith direction, 

(u,(x,,o)-v,(%,s)> = <~,(%~o)*~i(%,~))~ , 
‘> i 

+D.t.u,V’u,. (5) 

The term on the LHS of equation (5) is computed 
as an average of fluid velocity products along the 
trajectories of property particles; it depends on Pr. 
The subscript, f, on the bracketed term on the RHS 
of equation (5) indicates a quantity pertaining to fluid 
particles; it is, therefore, independent of Pr. It is also 
assumed in (5) that the average velocity in the ith 
direction is zero. The Eulerian turbulent term at the 
end of equation (5) arises from the interaction 
between molecular and turbulent diffusion ; it can be 
rewritten as 

u,v2u, = v * (u,VuJ -(Vu,)‘. (6) 
The initial stages of the diffusion are dominated by 
small scales of motion which, in the center of the 
channel, can be assumed homogeneous. As a result, 
the 1st term on the RHS of equation (6) is approxi- 
mately zero. The 2nd term can be expressed as 

(Vu,)’ = 5, (7) 

where A, is a length scale defined in terms of the 
Eulerian spatial Taylor microscales as 

Both Ai and u’ are computed at the center of the 
channel. 

In inhomogeneous turbulence the particle velocity 
is expected to be represented by a nonstationary ran- 
dom process. Therefore, the definition of the property 
autocorrelation equation (2) should be renormalized 
as 

in order for its interpretation not to be obscured by 
the effect of the varying magnitude of the turbulence 
intensities with time. The velocity products in equa- 
tion (5) can be expressed in terms of the property 
autocorrelations by substituting equation (9) into (5). 
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The following equation is obtained if equations (6) 
and (7) are used : 

where 

(11) 
In deriving (10) use was made of the fact that the 
RMS Lagrangian velocity at t = 0 (for any Pr) is 
equal to the Eulerian turbulent RMS intensity at the 
center [i.e. u,,,,,(O) = urms., (y = O)]. If the flow in the 
center of the channel is assumed to be homogeneous 
and isotropic, equation (10) simplifies into equation 

(3). 
The deviations of factors J; and J;,i, introduced in 

equation (lo), from unity reflect the flow inhom- 
ogeneities that the particles experience as they disperse 
into regions of varying Eulerian turbulence intensities. 
Factor J deviates from unity because molecular 
diffusion causes the markers to disperse farther away 
from the centerline than the fluid particles which orig- 
inate at the same positions. This effect is accentuated 
with decreasing Pr number. FactorJf,i is independent 
of Pr since it merely compares the intensity of the 
turbulence fluctuations at the centerline to those that 
the fluid particles sample, as they disperse towards the 
wall. 

.-Y 
3. METHODS 

3.1. Direct numerical simulation qf turbulent channel 
.Pow 

In order to calculate individual realizations of 
molecular paths, detailed instantaneous information 
about the flow is required. With a DNS of turbulence, 
the evolution of the fluctuating Eulerian velocity field 
at a large number of spatial locations is determined 
by solving the full three-dimensional time-dependent 
Navier-Stokes equations. Since the flow is directly 
calculated from first principles no modeliling is 
needed. Lyons et al. [l] have recently carried out a 
direct simulation of stationary, fully developed, tur- 
bulent flow in a two-dimensional channel at a low 
Reynolds number of 9048 based on the hydraulic 
diameter of the channel and the bulk streamwise 
velocity. Their code is employed in this work to supply 
instantaneous Eulerian velocity values. 

The flow of an incompressible Newtonian fluid, 
driven by a constant mean pressure gradient, is con- 
sidled. The velocity field is subject to periodic bound- 
ary conditions in the streamwise and spanwise direc- 
tions, x and z respectively. The periodicity lengths, 
L, and L,, determine the size of the computational 
domain in the corresponding directions. No-slip con- 
ditions are applied at the rigid channel walls which 
are separated by a distance 2H. The Navier-Stokes 

equations are integrated in time using the pseudo- 
spectral fractional step method originally developed 
by Orszag and Kells [15] with the added correction 
suggested by Marcus [ 161 such that the proper bound- 
ary condition on the pressure field is enforced at the 
channel walls. All variables are made dimensionless 
with wall parameters, the kinematic viscosity, v, and 
the friction velocity, u* = J(lzwl/p), where rw is the 
average shear stress at the wall and p is the fluid 
density. Length, time, and pressure scales charac- 
teristic of the wall region are then constructed as 
L* = v/u*, y- = v/u*2, P* = pu*2. 

The velocity field is represented as a truncated triple 
series of trigonometric functions in the homogeneous 
directions x and z and Chebyshev polynomials in the 
inhomogeneous normal direction. The use of Fourier 
series in the spanwise and streamwise directions sat- 
isfies the periodicity requirements in these directions 
automatically. The choice of a Chebyshev expansion 
in the direction normal to the channel walls naturally 
increases the spatial resolution of the computation in 
the high shear region close to the walls where steep 
gradients are expected. 

The main input parameters for the flow simulation 
are the computational box dimensions, the number of 
grid points in each direction and the size of the time 
step. An initial velocity field is also required to start 
the computations. Results were obtained in a box of 
L, = 1900, 2H = 300 and L, = 950 overlayed by a 
grid consisting of 128 x 65 x 128 (in x,y, z directions, 
respectively) grid points. The size of the time step was 
0.25. Lyons et al. [l] determined that this time step 
value is sufficiently small for the Courant stability 
constraint to be satisfied. The channel code has been 
thoroughly validated in a thesis by Lyons [14] 
by comparisons with the experimental data of 
Niederschulte [ 171. 

3.2. Fluid particle tracking 
An algorithm for calculating trajectories of fluid 

particles in a DNS of a turbulent channel flow was 
recently described in a thesis by Kontomaris [ 181 and 
in a paper by Kontomaris et al. [2]. It is based on 
a numerical integration of the equation of particle 
motion ; the position that a particle is initially assigned 
provides the initial condition for the integration. The 
integration is carried out with an explicit second-order 
Adams-Bashforth scheme, except for the&St step 
where a second-order Runge-Kutta method is 
employed. A record of the random particle velocities 
and positions at selected sampling times is stored for 
statistical post-processing. 

Let x(x0, t) and V(x,, t) denote the position and 
velocity at time t of the fluid particle originating at x0 
at time t = 0. The equation of motion for the particle 
is 

d+&(xo > 0 ~ = V(x,, t) 
dt (12) 
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subject to the initial condition, X(x,, t = 0) = x0. The 
Lagrangian particle velocity V(x,, t) is related to the 
Eulerian velocity U by 

V(x,, 0 = U[X(x,, f)>d (13) 

since the instantaneous particle velocity is the same as 
the fluid velocity at the particle position. From the 
DNS, the Eulerian velocity is available at each time 
step on a three-dimensional grid. Since the position of 
a particle does not, in general, coincide with a grid 
point, the particle velocity has to be evaluated by a 
three-dimensional interpolation of the Eulerian vel- 
ocity grid point data. Accurate interpolation is 
required, since the Eulerian velocity fields vary sharply 
in space and numerical errors in the calculated particle 
trajectory can grow rapidly with time. Kontomaris 
et al. [2] evaluated particle velocities using a mixed 
spectral-polynomial interpolation scheme based on a 
Chebyshev series in the normal direction and Lag- 
range polynomials of degree 5 in the homogeneous 
directions of the channel. They demonstrated that 
such a scheme provides adequate accuracy for the 
purpose of extracting single-particle Lagrangian stat- 
istics without an excessive computational cost. 

3.3. Stochastic modelling qf molecular diffusion 
The molecular diffusion process is usually visualized 

as the spreading of a substance from a region of high 
concentration to one oflower concentration, i.e. down 
a concentration gradient. This spreading is the net 
result of the erratic motion of the molecules of the 
diffusing substance. This spreading is the net result of 
the erratic motion of the molecules of the diffusing 
substance. In this paper, molecular diffusion is mod- 
elled in a statistical sense by the extensively studied 
class of stochastic processes known as “Random 
Walks”. As Egan [ 191 observes, in the case of a three- 
dimensional random walk, the probability of a 
marker, from a group of markers enclosed in a sphere, 
crossing the boundary of the sphere and migrating 
into the unpopulated region outside the sphere is non- 
zero. The probability of the reverse process, however, 
is zero since no markers exist outside the sphere. 
Therefore, the markers on average move from high to 
low concentration regions, which is consistent with 
the usual concept of a diffusion process. 

The mathematical and physical ramifications of the 
random walk (or random flights) problem have been 
reviewed in detail by Chandrasekhar [20]. He po!?rta 
out that the motion of a large number of particles 
executing random flights in a three-dimensional space 
without mutual interference can be interpreted as a 
diffusion process with a diffusion coefficient related to 
the mean square displacement of the particles which 
is to be expected at each step. The well-known random 
vortex method for solving the vorticity transpurt 
equation uses a random walk approach to simulate 
the molecular diffusion of vorticity blobs [19, 211. 
The concept of a random walk was also employed by 
Drummond et al. [ 121 and by Sawford and Hunt [13] 

in order to incorporate molecular diffusion effects into 
their Lagrangian models of turbulent diffusion. 

Chandrasekhar [20] studied the problem of a par- 
ticle undergoing a sequence of random displacements, 
for which the magnitude and direction of each is inde- 
pendent of all the preceding ones. For an uncorrelated 
(and therefore independent) three-dimensional joint 
Gaussian distribution of the displacements, the 
diffusion coefficient in an isotropic medium and the 
mean square displacement in each direction over a 
single step are related as 

IJ;, = 0; = CJ: = cr; = 2Dt. (14) 

In terms of quantities measured in wall units, the 
above equation is rewritten as 

(15) 

where Pr = v/D is the Prandtl number and v is the 
kinematic viscosity of the fluid. The molecular 
diffusion mechanism was incorporated in the fluid 
particle tracking algorithm of Kontomaris [18] by 
dividing the instantaneous displacement AX(x,, t) of 
a marked molecule into two separate components : a 
hydrodynamic component AXh(xO, t) which was deter- 
mined by the convective motion of the fluid particle 
containing the molecule at a given instant and a molec- 
ular component AX,(x,, t) determined by the random 
molecular motion, 

AX(x,, t) = AX,@,, t) + AX&,, t). (16) 

The two contributions are treated as independent and 
additive due to the large difference in the scales of 
molecular and turbulent motion. The contribution of 
the turbulent motion, AX,,, is computed from equation 
(12). The random molecular increments, AX,, are 
chosen to be normally distributed and mutually inde- 
pendent in the three different coordinate directions : 

Ax,(x”, t) = CT, * W, (17) 

where W stands for three independent standard Gaus- 
sian random numbers with zero mean and variance 
cr2 = 1. They are also independent from one molecule 
to another (so that there is no molecule-to-molecule 
interaction) and from time step to time step (so that 
the progress of the molecular motion does not depend 
on Lhe earlier history of the molecular path). In the 
case that a particle reaches and penetrates a channel 
wall, thus being brought outside of the computational 
domain, it is reflected symmetrically back into the 
channel. This is equivalent to enforcing the boundary 
condition of an adiabatic or impermeable wall [20]. 

3.4. Details of implementation 
For an accurate integration of [ 121 the time step size 

Attr has to be restricted to sufficiently small values. As 
a rule, the smaller the displacement in a single time 
step the more accurate the integration. As a sufficient 
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constraint on the time step for an accurate com- 
putation of molecular trajectories, it is required that 
the total typical displacement of a molecule (from [ 161) 
in any direction over a single time step does not exceed 
an appropriate small length scale. If the grid spacing 
in the respective direction in the center of the channel 
is selected as such a scale, it is found that a time step 
of Att, = 0.25 is sufficiently small for even the smallest 
Prandtl number (which gives rise to the largest molec- 
ular jumps) examined in this study. The sufficiency of 
this condition to produce Lagrangian statistics inde- 
pendent of the time step was tested with a low res- 
olution simulation in a small computational box of 
dimensions L, = 630, 2H = 250 and L, = 630 and a 
grid of 16 x 33 x 64 (in x, y, z directions, respectively) 
points. The tracking time step was varied in the range 
permitted by the above condition and it was confirmed 
that it had no effect on the computed results. 

A large number (16 129) of molecules were released 
simultaneously at time t = to and assigned initial pos- 
itions that spread them over a horizontal xz-plane 
at the center of the channel (i.e. y = 0). The initial 
positions of the molecules form a mesh with uniform 
spacings Axpr = 14.921 and Azpr = 7.422. Their tra- 
jectories are then traced for a total time sufficiently 
long for the fluid velocity at the position of the mol- 
ecules to become uncorrelated with its initial value at 
the time of release. The statistical homogeneity of 
the Eulerian fields in the streamwise and spanwise 
directions removes any statistical dependence on the 
x and z coordinates of the source location. Therefore, 
ensenQle averaging over molecules released at differ- 
ent x and z locations is permitted. Similarly, the sta- 
tionarity of the Eulerian fields renders the time of 
release to irrelevant, thus justifying, if necessary, 
ensemble averaging over molecules released at differ- 
ent times, too. The number of molecules allocated 
was restricted by the number of grid points over a 
horizontal plane needed to resolve the Eulerian fields. 
The molecules are released at positions about one grid 
spacing apart; releasing more molecules would not 
improve the statistical sample (except perhaps at long 
diffusion times) because the motion of adjacent par- 
ticles would be, initially, strongly correlated. Five 
tracking experiments are performed in the same tur- 
bulence simulation for computational economy. 
Prandtl or Schmidt numbers equal to 0.05, 0.1, 0.5 
and 1.0 were studied, for which the RMS jump sizes 
(in one time step of 0.25 wall units) from [15] are 
3.162, 2.236, 1.000 and 0.707, respectively. The case 
of fluid particles, which can be viewed as a limit of 
molecules with an infinite Prandtl number, was also 
included in this study as a basis from which to assess 
ri%lecular diffusivity effects. 

The next section presents a Lagrangian statistical 
description of the dispersion of molecules of different 
Prandtl numbers originating at the center of the chan- 
nel under the synergistic action of both turbulent and 
molecular diffusion. Clearly the property auto- 
correlation is the key quantity of interest ; other stat- 

istical quantities are also reported in order to provide 
a more complete picture of the dispersion and to facili- 
tate the interpretation of the property auto- 
correlations. Fair statistical sampling requires aver- 
aging over many independent realizations of particle 
trajectories and many independent turbulence real- 
izations. The statistical error, because of the use of an 
ensemble consisting of a necessarily finite number of 
molecular trajectories, deteriorates at longer diffusion 
times and larger molecular diffusivities (or smaller 
Prandtl numbers) because the molecules spread out 
and occupy a larger amount of space. Statistical con- 
vergence was judged by comparing the computed stat- 
istics to statistics averaged over only half (i.e. 8064) 
of the available trajectory realizations. It was found 
that the reported statistics were free of significant stat- 
istical error. The dependence of the computed stat- 
istics on the peculiarities of the turbulence at the 
instant of release is expected to be insignificant 
because of the large size of the computational box. 
This dependence also weakens with decreasing 
Prandtl number because molecules of high molecular 
diffusivity follow less closely the organized turbulent 
structures that might exist in the center of the channel 
at the time of release. 

4. RESULTS 

The motion of a single particle is described com- 
pletely by the vector function X(xr,, t) which gives the 
position of the particle at any time t. The trajectories 
of two discrete molecules with Pr = 0.1 and Pr = 1 
and the fluid particle in which they were originally 
placed are compared in Fig. 1, where only the side view 
is shown. All particles are released simultaneously at 
the point (x = 0, y = 0, z = 7.42) and their trajectories 
are computed for a total time of 123.5 wall units. The 
trends of all three trajectories are similar since they 
are all determined by approximately the same hydro- 
dynamics (at least for as long as the deviations remain 
small). 

In place of the position vector, X(x,,, t), one may 
use the particle displacement vector during the time 
interval t : 

FIG. 1. Comparison of the trajectories of two molecules with 
Pr = 0.1 and 1 .O and of the fluid particle in which they were 
released, at the c&er of the channel and traced for 123.5 

wall time units. 
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s f Y(t) = X(x,, t)-x, = V(x,, t) dt. (18) 
II f 

In order to consider the statistical characteristics of 
the displacement fluctuations it is necessary to sub- 
tract the mean value of the displacement vector, (Y), 
to obtain 

Y/(x,, 0 = Y(x0, 0 -<Y(t)>, (19) 

where ( ) indicates averaging over the parameter x,,, 
i.e. over all particles. Statistics of particle position (or 
displacement) are related to particle velocity statistics 
through equation (18) and, to statistics of the Eulerian 
velocity field through equation (13). The focus of this 
section is the description of the statistical charac- 
teristics of the particle velocity (V,(t), V*(t), VX(t)) 
and displacement (Y,(f), Yz(t), Y,(t)) vectors. All 
results are scaled with wall parameters. 

4.1. Displacement distributions 
The three-dimensional probability density of Y, 

p(y 1 t; Pr), depends on the diffusion time t and Pr. 
The function p(y 1 t; Pr) may also be interpreted as 
the mean volumetric concentration c(x,, x2, x3, t) field 
resulting from an instantaneous point source of unit 
concentration at the origin (0, 0,O) at the initial t, = 0. 
The number of independent variables can be reduced 
by integrating the function c(x,, .x2, x7, t) over all 
values of x, and x3. The resulting function, p(LIz ( t; 
Pr), describes the one-dimensional distribution. 

Figure 2 shows the displacement distribution across 
the channel at a dimensionless diffusion time of 50 for 
different Pr. These curves were computed according 
to the definition of a probability density function : 

(20) 
where 4.2. Mean velocity 

P= 
number of particles withy, < Y,(t) < yZ + Ay2 

total number of particles 

The time-history of the mean particle velocity deter- 
mines the mean downstream displacement of the 
center of gravity of a contaminant cloud with respect 
to the position of the source. The computed mean 
streamwise particle velocity for different Prandtl num- 
bers is shown in Fig. 3. It is the result of the sampling 
by the particle of the Eulerian streamwise velocity 
field at different positions across the channel cross- 
se&ion. Its initial value is equal to the Eulerian mean 
velocity at the centerline. U,, obtained as an instan- 
taneous average over the horizontal directions at the 
time of release. Surprisingly, it increases initially. This 
is counterintuitive because, as the particles spread 
away from the centerline, their average velocity would 
have been expected to follow the decreasing trend of 
the Eulerian mean velocity. This phenomenon, which 
becomes less pronounced as the Prandtl number 
decreases, is due to biased sampling of the Eulerian 
fields. Fluid particles in the center represent aging 
turbulence whose mean velocity tends to increase 

(21) 
According to the above definition 

1.6 

2 1.2 

$1:: 

0.0 
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Fm. 2. Probability density of the normal coordinate of prop- 
erty particles with different Pr numbers at a moderate 

diffusion time (t = SO). 

s H 

pdy2 = 1. 
-H 

(22) 

At any given time the range of yz values over which 
particles are found is divided into a number of bins 
and the particles with a normal coordinate falling 
within each bin are counted. The bin width, Ay2, is 
chosen sufficiently small to resolve the variation in the 
computed distributions but large enough to smooth 
out unwanted statistical noise. 

It is seen in Fig. 2 that within 50 wall time units, 
molecules with Pr = 0.05 start reaching the channel 
walls. After 100 time units markers of all Pr numbers 
examined reach the channel walls. The shapes of the 
distributions were found to obey (approximately) the 
following expression : 

, 

p(.hit;Pr) =(‘,,,(t;Pr)exp[-21Ti;riFr~. 

(23) 

The (decaying) maximum concentration, c?,,,,,,, occurs 
at the centerline. The values of c,,,,,,, o2 which min- 
imize the mean-square deviations between the pre- 
dictions from (23) and the actually computed curves 
in Fig. 2 are given in Table 2. The correlation 
coefficient, R, included in Table 2, is a measure of the 
goodness of the fit; the square of R represents the 
proportion of the observed variation which can be 
accounted for by the regression curve [22]. For equa- 
tion (23) to represent a Gaussian distribution, the two 
regression parameters c,,,,, and o2 must satisfy the 
condition 

Cn,X * c2 'J(27c) z 1. (24) 

Observed values of c,,,,,, * cl. J(27c) are also tabulated 
in Table 2. 
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Table 2. Best estimated values for the regression parameters, &,,, and c2, in equation (23) used 
to approximate the computed displacement distributions in Fig. 2 

co 1.5565 24.49 0.956 0.96 
1 1.5697 25.38 0.98 1 .oo 
0.5 1.5279 26.51 0.97 1.02 
0.1 1.022 38.3 0.958 0.98 
0.05 0.80391 49.07 0.953 0.99 

16.00’ 125 
t 

FIG. 3. Average streamwise particle velocity. 

because of the action of the mean pressure gradient 

1181. 

4.3. RMSparticle velocities 
The fluctuating particle velocity, v(x,, t), (defined 

as V(%, t)-(V)) is nonstationary initially due to the 
i&,omogeneities of the flow in the normal direction. 
At long times it is expected to become stationary as a 
result of the boundedness of the flow in the inhomo- 
geneous direction. The root-mean-square fluctuating 
particle velocities, u,,,,~, are shown in Fig. 4. It is seen 
that they initially decrease with time even at small 
times when most of the particles are in a region where 
the Eulerian intensities are either constant or slightly 
increasing. Tkis phenomenon, which becomes less 
pronounced at low Pr, is consistent with the observed 
increase in the mean velocity discussed above. At long 
times the RMS particle velocities increase because the 
particles penetrate into regions of higher turbulence 
intensities as they approach the wall. The effect of wall 
inhomogeneities is manifested earlier in the lower Pr 
particles because, for any given time, they travel far- 
ther away from the center. 

The inhomogeneity factors,j; and ff,,,, introduced in 
Section 2 can be easily calculated from the curves 
in Fig. 4. At small times they remain close to their 
homogeneous value of unity. At t = 10, for example, 
ff,, = 1.063,& = 1.041 and,f,, = 1.017; at the same 
time (t = lO),f, = 1.086, f2 = 1.03 andJ; = 1.027 for 
Pr = 0.05. 

4.4. Dispersion 
The mean square value of the fluctuations of the 

total (i.e. including both molecular and turbulent) 
displacement, Di (t) = (Yi*(x,, t)), is usually referred 

0 25 50 t 75 100 125 

0 25 50 
t 

75 100 12 

0.80 , , , ( I , , , , , , , , , , , , , , , , , , , 
t lc\ 

0 25 50 t 75 100 125 

FIG. 4. Root-mean-square fluctuating particle velocities. 

to as the dispersion. The cloud of contaminated par- 
ticles spreads around its center of gra&y as it is con- 
vected downstream; its average linear dimension at 
any time instant, t, is proportional to [Dl(t) - D2(t) . 
D3(t)](‘/3). At small times and low Pr, the dispersion 
is dominated by molecular diffusion, so it increases 
linearly at a rate roughly equal to 2/Pr. The square 
roots of directly computed values of the total dis- 
persions corresponding to the displacement dis- 
tributions of Fig. 2 are in good agreement with the 
values of oz (given in Table 2) used to fit the dis- 
placement datributions. 

The total displacements in the homogeneous direc- 
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tions are nonstationary because the particles continue 
to spread without limit. The normal component of the 
dispersion, however, is limited by the presence of the 
walls and has to approach a constant value cor- 
responding to a uniform distribution across the chan- 
nel. At this asymptotic limit the probability density of 
the displacement becomes equal to 1/2H and its 
second moment reaches a value of 

D 
(2H)* _ (2 * 150)’ _ 7500, 

2max - 12 12 

The convective contributions to the dispersion, cal- 
culated as D,(t) - 2t/Pr, are shown in Fig. 5. The only 
convective contribution in the transverse directions is 
due to the turbulence. In the streamwise direction, 
however, the varying velocity also enhances the dis- 
persion [23%25]. The effect is manifested at times 
sufficiently large for the dispersing particles to experi- 
ence appreciable mean velocity gradients. For small 
diffusion times, turbulence remains the dominant con- 
tributor to the dispersion in all three flow directions. 

For small times, turbulent dispersion depends pri- 
marily on the intensity of turbulent velocity fluc- 
tuations. This is illustrated by the initial independence 
of the dispersion curves in Fig. 5 of Pr. Although 
the total dispersion increases with decreasing Pr, the 

12000 ,,,,,,,,,,1,,/,,,,,,,,,, 
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FIG. 5. Convective contributions to the mean-square particle 
dispersion. 

turbulent contribution to the dispersion in the trans- 
verse directions, Figs. 5(b), 5(c), exhibits a reverse 
trend. This is because the effective length scale of the 
eddies which disperse the property particles dimin- 
ishes with decreasing Pr (or increasing molecular 
diffusivity) as a result of the added decorrelating effect 
of molecular diffusion. This effect can be visualized 
as associated with “leaky eddies”; markers leak in 
random directions along the coherent path of an eddy 
because of molecular diffusivity, thereby reducing the 
dispersive effectiveness of the turbulence. 

It is notable that, in the normal direction, the tur- 
bulence contribution to the dispersion for particles 
with Pr = 0.05 reaches a maximum at approximately 
t 2 85. The total dispersion at that time is 

D?(fL 85;Pr = 0.05) = 
.( 

+;~600+ 2x85 
~ = 4000 
0.05 

or only 53% of the maximum allowable. The total 
dispersion curve (shown in the thesis of Kontomaris) 
for Pr = 0.05 exhibits a S-shaped variation which, 
superficially, resembles the experimental dispersion 
curve observed by Vames and Hanratty [26] for the 
case of droplets traced for long times. 

In the streamwise direction (Fig. 5a) molecular 
diffusion enhances turbulent dispersion because the 
added dispersive contribution associated with the 
varying mean velocity can offset the effect associated 
with “leaky eddies”. This enhanced streamwise dis- 
persion is more prominent at low P r because the par- 
ticles disperse over larger distances from the centerline 
(for a given diffusion time) and therefore experience 
a greater variation in the streamwise mean velocity. 

4.5. Property autocorrelations 
The influence of Pr on the property auto- 

correlations, calculated from equation (9), is shown 
in Fig. 6. The curves for Pr = 1 and 0.5 are close to 
that for a fluid particle, Pr = x. However, molecular 
diffusion is found to have a strong effect on the prop- 
erty autocorrelation for Pr = 0.1 and 0.05. The initial 
shape of the property autocorrelations gradually 
changes from parabolic to linear as the Pr decreases. 
At long times the normal autocorrelation assumes 
negative values as a result of outflows from the wall 
wgion. Such negative tails were more clearly apparent 
in autocorrelations computed by the low resolution 
simulation mentioned in Section 3.1, which was 
extended to times up to 250 wall units. It is also inter- 
esting to note that the Lagrangian statistics become 
more isotropic as Pr decreases. The computed prop- 
erty autocorrelations for Pr = 0.05 are the same in 
all three directions despite the significant anistropy 
exhibited in the curves for Pr = co. 

Lagrangian integral time scales of the normal and 
spanwise velocity components of the particle, defined 
as Z, = sc R,(s) ds are presented in Table 3. Figure 
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FIG. +Effect of Pr on the computed property auto- 
correlation. 

6(c) shows that the total tracking time was not 
suljicient for the spanwise autocorrelations to drop to 
zero. The spanwise integral scales were computed by 
fitting the computed R, curves with an exponential 
function and ext?apolating to times where they 
became negligible. The contributions from the 
extrapolated tails of the correlations were no more 
than 3.5%. A rapid decrease of the time scale with 
decreasing Pr is observed at low Prandtl numbers. It 
should be pointed out that the choice of an appro- 
priate velocity scale for the conversion of these inte- 
gral time scales into eddy diffusivities is not obvious 
because the flow is inhomogeneous. 

Table 3. Lagrangian integral time scales of the normal and 
spanwise property autocorrelations 

Pr T2 T3 

0.05 19.2 21.9 
0.1 24.3 29.1 
0.5 31.9 45.3 
I 33.6 48.3 
00 33.8 52.0 

0 25 50 75 100 125 
s 

-0.1 fl 
0 25 50 75 100 125 

0 25 50 75 100 125 

FIG. 7. Effect of Pr on the difference between the fluid and 
the property autocorrelation. 

5. DISCUSSION 

It would be convenient if the shape of the property 
autocorrelation could be described by some simple 
function. The autocorrelations for Pr = 0.1 are very 
close to an exponential in all three directions. 
However, no general conclusion can be drawn regard- 
ing the agreement of the computed correlations with 
an exponential function. The complicated shape of 
the correlations can be, partially, attributed to the fact 
that different portions of the curves, for different times 
and different Pr, are determined by different tur- 
bulence hydrodynamics because of the inhomogeneity 
of the flow. An additional complication results 
because the transitional value of the ReJlfed in the 
simulation precludes a behavior characteristic of 
either a high or a low Re asymptotic limit. 

5.1. Behavior at large times 
Saffman [3] speculated that, for homogeneous tur- 

bulence and sufficiently high Re, the normalized 
difference [R,,(s) - Ri(s)]/R,i(s) should become inde- 
pendent of time delay, S, at long times. The theoretical 
calculations of Kontomaris and Hanratty [7] support 
this notion. Tbpmaxima exhibited by the plots of 
[R,,(s)-Ri(s)] in Fig. 7 are consistent with these 
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results. The difference can be viewed as the product 
of [R,,(s) --R,(s)]/&,,(s) and R&). The latter two 
quantities exhibit opposite trends with time and, as 
a result, their product exhibits a maximum. These 
maxima decrease and become broader with increasing 
Pr. 

The results in Fig. 7 and the values of R, in Fig. 6 
for Pr = cc are used to develop the plot in Fig. 8. The 
rate of change of [R,,(s) - R,(s)]/R&) diminishes with 
time. A constant asymptotic value of this ratio was 
not reached in the streamwise direction within the 
tracking time covered. In the normal direction, due 
to the smaller characteristic time scales, a long time 
behavior is approached within times sufficiently small 
that most particles still remain in the nearly homo- 
geneous part of the flow in the center of the channel. 
Consequently, the ratios [R,,(s)- RZ(s)]/R&) 
approach values which remain approximately con- 
stant for some time. These asymptotic values are 
reached earlier for higher Pr; their magnitude 
increases toward unity with decreasing Pr. Both of 
these observations are in qualitative agreement with 
the isotropic turbulence calculations of Kontomaris 
and Hanratty [7]. At longer times, however, the ratio 
[R&S)- R2(s)]/R&) decreases because of the influ- 
ence of flow inhomogeneities. At even longer times 
both R,,, and R, approach zero and statistical and 

l.OL! I I I ,, 
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FIG. 8. Normalized values of the difference of the fluid and 
property autocorrelations. 

numerical uncertainty do not permit an accurate 
determination of the above ratio. 

5.2. Behavior at small times 
The difference [R,,(s) - R,(s)] is convenient for 

quantifying molecular diffusivity effects at small times. 
The small time portion of the curves in Fig. 7 can be 
interpreted by the generalization of Saffman’s small 
time theory, equation (lo), presented in Section 2. The 
characteristic time scale for the interaction between 
molecular and turbulent diffusion, T,,,,, in wall units 
is obtained by resealing, equation (1 lc), with wall 
parameters, *m,l = PrAf. Values of A, (A, = 15.5, 
AZ = A3 = 14.8) are calculated from equation (8) with 
Taylor microscales from Table 1. The corrections rep- 
resented by factors ,f; and ff,I make only a small con- 
tri&ion$ecause they remain very close to unity for 
the small times that Saffman’s theory is applicable. 

Figure 9 examines the agreement between the com- 
puted autocorrelation differences and equation (lo), 
which is represented by the dashed lines going through 
the origin. The agreement is satisfactory at small 
times. The range of validity of equation (10) is more 
limited in the streamwise direction than in the two 
transverse directions, probably because of the varying 
mean streamwise velocity which is not accounted for 

0.25 

0.25 

0.00 
0 2 4 6 6 10 

S 

FIG. 9. Comparison of the small time behavior of the differ- 
ence of the fluid and the property autocorrelation with 
a generalization of Saffman’s theory for anisotropic 

turbulence. 
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in the derivation of (10). In addition, the streamwise 
Eulerian intensity increases more rapidly with distance 
from the centerline than do the two transverse com- 
ponents [14]. In all three directions, the range of val- 
idity of equation (10) narrows with decreasing Pr. 
This is a consequence of the inherent limitation in 
Saffman’s derivation, equation (6), imposed by the 
assumption that the size of the diffusing property 
element be small compared to the length scale of the 
rotational and straining motions of the turbulence. 
The time scale of the turbulence motions at the chan- 
nel center [which can be estimated as l/w = 12.9 with 
w = J(@ +@) (summation on i) being the RMS size 
of the fluctuating vorticity vector] places an upper 
bound to the times at which (10) can be expected to 
be a reasonable approximation. It should be noted, 
however, that the agreement between the computed 
data and Saffman’s strictly isotropic result in equation 
(3) [using the Taylor length microscales, I,,, from Table 
1 in equation (4)] is limited to a more narrow range of 
times than equation (lo), especially in the streamwise 
direction. 

6. CONCLUSIONS 

The effect of molecular diffusivity on turbulent 
diffusion from a point source of heat or mass was 
investigated by computing molecular trajectories in 
the center of a direct numerical simulation of channel 
flow. The fluid velocity along the trajectory of a heat 
or mass element and its displacement from the 
locat& of the source are described in terms of 1st 
and 2nd order statistics. 

The shape of the property autocorrelations changes 
drastically with Prandtl number and it cannot be 
described by a simple exponential or Gaussian func- 
tion. The effect of Prandtl number for small diffusion 
times is accurately described by Saffman’s theory, gen- 
eralized for anisotropic turbulence. For long diffusion 
times, the computed autocorrelations suggest that in 
homogeneous turbulence the ratio [R&) - Ri(s)]/R&) 
approaches a value independent of s. This constant 
value approaches unity in the limit of small Prandtl 
numbers. 
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